Set 3 BE_EXTC May_2020, RF Design PCC-ETC801 CBCGSH

1. Maximum power transfer from the output matching network to the transistor will occur when (1M)

ΓL=Γin Γout=Γs Γout=Γs* ZL=Zs

2. If S11 = 0.9 ∟ 180 °, S12 = 0.031 ∟ −9 °, S21 = 4.250 ∟ 61 °, S22 = 0.57 ∟ − 120 for a transistor. Comment on its stability (2M) Conditionally stable Unconditionally stable Unstable oscillator

3. Find k value if $S11 = 0.9 \perp 180 \circ , S12 = 0.031 \sqcup -9 \circ , S21 = 4.250 \sqcup 61 \circ , S22 =$

(2M)

 $\begin{array}{c} 0.57 \sqcup -120 \\ 0.045 \\ 0.99 \\ 0.383 \\ 1.9 \end{array}$

4. For the given s-parameters of a transistor calculate maximum gain $S11 = 0.75 \perp 180 \circ$, $S12 = 0.S21 = 4.50 \perp 61 \circ$, $S22 = 0.25 \perp -100$

(2M) 16.92 dB 25.1dB

- 0.96dB 1.616dB
- 5. A transistor having S parameters as $S11=0.6 < -163,S12=0.039 < 35,S21=7.12 < 86,S22=0.5 \ -38$. what is centre for input stability circle (2M)
 - 1.75∟171.48. 1.67∟-48 1.3∟-48 d. 1.5∟100
- 6. For the diagram input stability circle id drawn. If S22>1 then which portion of the diagram is stable region. (1M) White. violet orange.

not inside any circle

- Major drawbacks of Constant K filter is Slow attenuation rate after cut-off Fast attenuation rate after cut off Constant image impedance Simple design
- 8. The Matching section of composite filter consist of (1M) Pi sections Bisected pi sections T section Bisected T section
- For a High-pass composite filter with a cut off frequency of 4 MHz and impedance of 50ohm. There is infinite attenuation pole at 2.05 MHz. Calculate value of m (2M) 0.861
 - 0.79
 - 1.861
 - 1.79
- For a low-pass composite filter with a cutoff frequency of 2 MHz and impedance of 50ohm. There is infinite attenuation pole at 2.05 MHz. Calculate inductor value of constant k filter. (2M)
 - 7.95 μH 3.19 nH 8.88 μH 3.19 μH
- 11. For Chebyshev T LP filter with g1=2.7108, g2=0.8326, g3=2.7108, g4=1 and having 25MHz cut-off frequency. Calculate value of Inductor for internal impedance 75 ohm.

(2M)

(1M)

 $1.294 \mu F$

1.97μF 4.88 μF 2.56μF

- 12. While designing a constant-k low pass filter (T-section) shown below, what would be the value of capacitor if L/2 = 20mH, $R0 = 500 \Omega$ and fc = 5 kHz? (2M) 0.0635 μ F 0.10 μ F 0.1273 μ F
 - 0.20 μF
- 13. For a maximally flat low-pass filter with a cut off frequency of 100 GHz, impedance of 50 ohm and at least 5 dB insertion loss at 400 MHz. Calculate No of elements. (2M) 2
 - 7
 - 2
 - 8
- 14. For 0.5dB equal-ripple pass band response if g1 = 1.5963, g2 = 1.0967, g3 = 1.5963, g4 = 1.0000 and cut-off frequency 10MHz Calculate length of the series stub (2M) 3.75 m
 5 m
 0.75 m
 - 30m
- 15. One port oscillator uses----- at termination port (1M) PN junction diode transistor IMPATT diode resistor
- 16. Calculate input impedance of one port oscillator if Γin = 1.75 ⊥ 40 at 4GHz and Z0=50 (2M)
 -74.62+j81.43
 -76.153+ j84.42
 -74.62- j81.43
 76.153+ j84.42
- 17. For one port oscillator design if Zin = -55.6+j102 ohm what load value load impedance is required for oscillations (1M)
 - 55.6+ j102 -43.6+j122 43.6-j122 -43.6- j122
- 18. Common-mode noise can be suppressed using ------ choke coils. (1M)

	Common-mode Differential-mode Multimode Transformer	
19.	When a common ferrite is placed on both signal and return paths, noise is attenuated. Both common mode and differential mode Only differential mode Only common mode	(2M)
20.	Cable to cable coupling can also be reduced by over two transmission lines. Reducing separation Adding cable shield Adding inductor Adding capacitor	(1M)
21.	EMC ground is impedance plane for voltage reference of signals. Infinite Zero 1 k Ω 1 MO	(2M)
22.	is one of the techniques to avoid common mode impedance coupling. Multipoint grounding Shunt impedance Removing ground	(1M)
23.	shorting each device with each other Hybrid grounding technique works as single point ground at frequency Low High Medium Both high and low	(2M)
24.	When individual ferrite is placed on both the signal and return paths noise is suppressed. Only differential mode Only common mode Both common mode and differential mode	(1M)
25.	No Cable to cable coupling can also be reduced by between two transmission lin Reducing separation Increasing separation Adding inductor Adding capacitor	ies. (1 M)
18.	Cable to cable coupling can also be reduced by both wire pairs transmission twisting	lines.

twisting

	Reducing separation between	
	Adding inductor between	
	Adding capacitor between	(1M)
26.	Protection of equipment and personnel from the hazards of lightening discharge, make	
	very necessary.	(1M)
	Bonding	
	Insulation	
	Use of insulated cabinet	
	Use of thick insulation	
27.	Shield effectiveness is the ratio of	(2M)
	Magnitude of incident electric field to transmitted electric field	
	Magnitude of incident magnetic field to transmitted electric field	
	Magnitude of incident electric field to transmitted magnetic field	
• •	Magnitude of incident electric field to transmitted power	
28.	A shield is good when is more	(1M)
	absorption loss	
	Insulation	
	Impedance of shield	
•	Its resistivity	
29.	Apertures on shield enclosure shielding effect.	(1M)
	Improves	
	Reduces	
	is called	
20	A desired slot in the shield is replaced by	$(1\mathbf{M})$
30.	Small holes	$(1\mathbf{W})$
	A thick wooden block	
31	Direct digital synthesizers utilizeto construct an output signal waveform in t	he time
011	domain piece by piece from a base (clock) signal.	(1M)
	Comparator	()
	amplifier	
	digital signal processing	
	divider	
32.	Typical conversion loss numbers for a single-diode doubler are in the order of dB.	(2M)
	10	
	20	
	0-5	

5-9

33. A direct frequency synthesizer offers ------ switching speed as compare to indirect frequency synthesizer. (1M)
Excellent
poor
just sufficient
lower

Set 4 BE_EXTC May_2020, RF Design PCC-ETC801 CBCGSH

1.	In a unilateral amplifier is said to be unconditionally stable if S11<1 S12=0 S21>1 S11>1	(1M)
2.	A transistor having S parameters as S11= 0.5 – -100, S12=0, S21=5 – 50, S22=0. Comment on stability. Conditionally stable. Unconditionally stable. Unstable. partially Stable	9∟-60. (2M)
3.	For the given s-parameters of a transistor calculate k :S11= $0.674 \bot -152$, S12= $0.075 \bot 6.2$, S21= $1.74 \bot 36.4$, S22= $0.6 \bot -92.6$ 1.284 0.99 0.383 1.9	(2M)
4.	For the given s-parameters of a transistor if $S11=0.65 \bot -95$, $S12=0.035 \bot 40$, $S21=5 \bot 115$, $S22=0.8 \bot -35$. Determine centre of output stability circle. $1.3 \bot 48$. $1.67 \bot -48$ $1.3 \bot -48$ d. $1.5 \bot 100$	(2M)
5.	For a transistor if S11= 0.55∟-171.3, S12=0.057∟16.3, S21=2.058∟28.5, S22=0.572∟-95.7 Find Figure of merit 0.0786 0.99 0.383 1.9	(2M)
6.	For the diagram output stability circle id drawn. If S11>1 then which portion of the diagram is stable region. White.	he (1M)

pink blue. not inside any circle

In Richards' transformation stubs can be physically separated by	(1M)
Unit element	
Series stub	
Shunt Stub	
Impedance element	
The advantages of insertion loss methodis	(1M)
Complicated design	
Shape pass and stop band of filter	
Increased loss	
Ideal response	
	In Richards' transformation stubs can be physically separated by Unit element Series stub Shunt Stub Impedance element The advantages of insertion loss methodis Complicated design Shape pass and stop band of filter Increased loss Ideal response

- For m-derived LP filter with the following specifications Ro= 50Ω, fc= 60 MHz and f∞= 75 MHz. Calculate value of m (2M) 0.6
 - 0.79
 - 1.861
 - 1.79
- 10. For a constant K-filter with the following specifications Ro=75 Ω , fc= 250 MHz what value of inductor is required (2M)
 - 0.096µH 16.97pH 41.88MH 0.056µH
- 11. For Chebyshev T filter having 1.0dB ripple with g1=1.4029, g2=0.707 and g3=1.9841 and having 40MHz cut-off frequency. Calculate value of capacitor for internal impedance 50 ohm.
 - 159 .1pF 160.97pF 141.88 pF

125.56pF

- 12. For a low -pass filter by the image parameter method with the following specifications: R0 = 75, fc = 25MHz. What is the value of Inductor will you use? (2M)
 - 0.955μH 0.169 μH 4.188 μH
 - $2.556 \; \mu \mathrm{H}$
- 13. For a Butterworth low-pass filter with cut-off frequency 20MHz and 30 dB insertion loss at 60 MHz Calculate No of elements. (2M)
 - 3
 - 5
 - 2
 - 6
- 14. For 1dB equal-ripple pass band response if g1 = 2.0237, g2 = 0.9941, g3 = 2.0237, g4 = 1.000.Calculate, impedance of shunt stub for T filter. (2M) 1.005 ohm 2.0237 ohm 0.9941ohm 1.0237 ohm

(2M)

- 15. Negative resistance implies
 - Γin=1
 - Γin=0
 - Γin<1
 - Γin>1
- 16. Calculate input impedance of one port oscillator if Γin=1.5 ⊥ 40 at 4GHz and Z0=50 ohm
 -65.65+ j101.28 (2M)
 67+j122
 2.63+j122
 5.414+j101.28.
- - -93.6- j122
- Common mode impedance coupling interference can also be mitigated by ------ (1M) Shunt impedance Single point grounding

Removing ground shorting each device with each other

(1M) 19. ----- technique has single and multi-point grounds. Hybrid grounding Multipoint grounding High and low grounding High frequency grounding 20. Hybrid grounding technique works as multi point ground at ------- frequency (2M)Low High Medium Both high and low 21. The interference due to coupling between source and victim separated without any wired connection is called------. (1M) Source Victimization Radiated EMI Conducted EMI load Victimization 22. If cables and signal transmission lines are poorly ------ then radiated EMI occurs. (2M)Installed Shielded Manufactured Separated 23. ----- coupling of EM energy leads to radiated EMI. (1M) Capacitive Resistive Conducted Source-victim 24. A ----- choke coil is used to suppress common-mode noise. (1M) Common-mode Differential-mode Multimode Transformer 25. ----- noise can be attenuated with the help of a common ferrite placed on both signal and (2 M) return paths. Both common mode and differential mode Only differential mode Only common mode No

26.	over two transmission lines can also be used to reduce cable to cable coupling.(1M) Reducing separation		
	Adding cable shield		
	Adding inductor		
	Adding capacitor		
27.	Accumulation of static charges can be prevented with the help of Highly insulated cabinet	(1M)	
	Bonding		
	A thick insulator		
20	I nin insulated cover for entire circuit		
28.	A shield is good when is more Reflection loss	(1M)	
	Insulation		
	Impedance of shield		
	Its resistivity		
29.	Shielding is compromised due to intentional	(1 M)	
	Low impedance	(1112)	
	Ventilation and slots		
	High insulated coating		
	Inclusion of high resistive coating		
30.	A slot in the direction of has much less effect on the shielding	(1M)	
	Current		
	Voltage		
	Power		
	Radiated field		
31.	Small holes replacing slot in a shield behave like	(1M)	
	Transmission path		
	Waveguide		
	Cooling medium		
	high impedance current path		
18.	The elementary dividers are to obtain higher division coefficients in frequency	divider	
	in frequency synthesizer.	(1M)	
	Cascaded		
	Cascaded		
	D-F/F		
	T-F/F		
29.	A component is used as multiplier in a frequency synthesizer.	(1M)	
	Low pass filter		
	band pass filter		
	nonlinear		
~ 1	linear		
31.	switching speed is achieved in a direct frequency synthesizer as compare to indi	rect	
	frequency synthesizer.	(1M)	

Excellent poor just sufficient lower